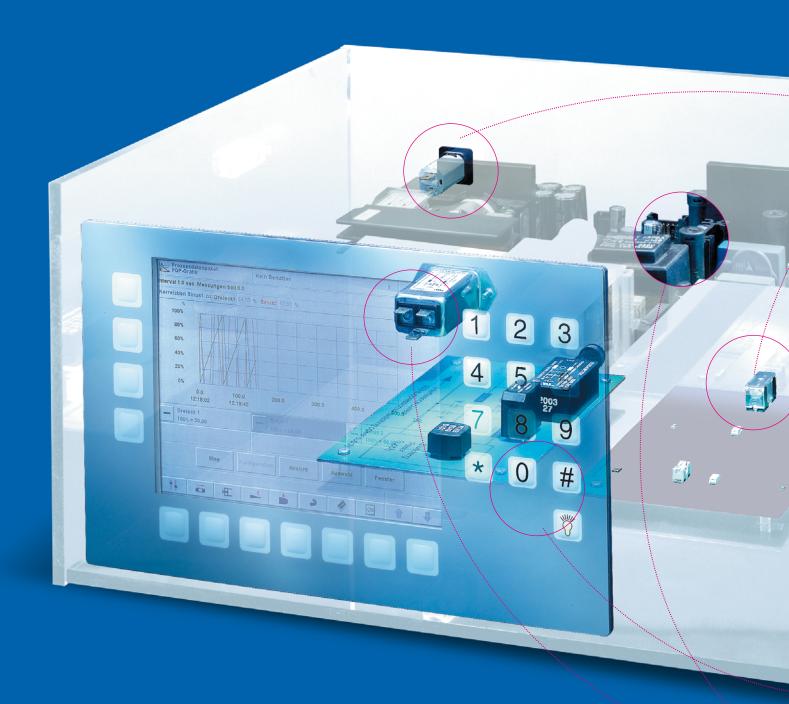
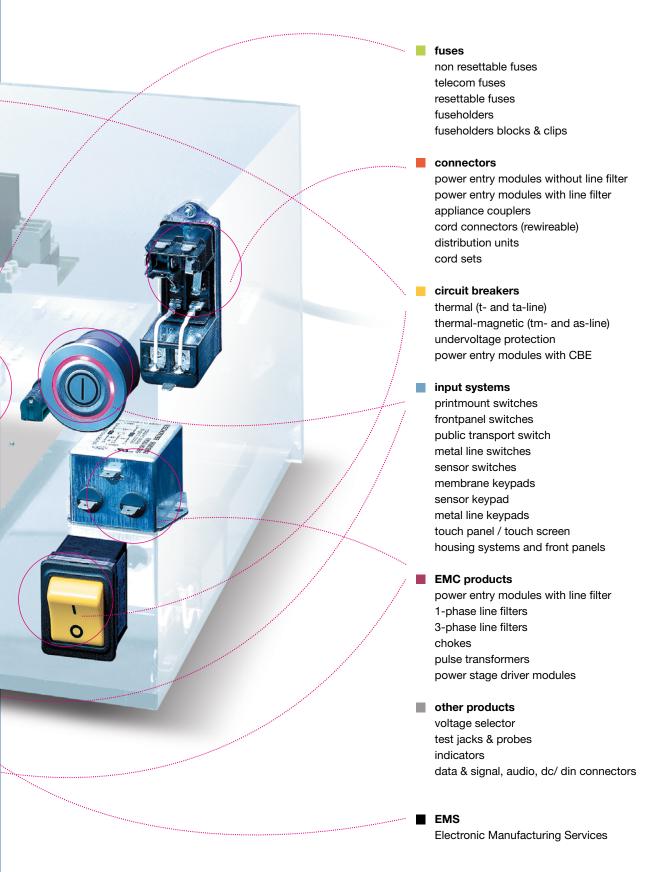

www.schurter.com/emc



Intro Information	XXX
Power stage driver modules	XXX
Keyword Index	XXX
Product Datasheets	XXX
General Product Information	XXX
Product Standard / Definitions / CE-Marking / Conformity	XXX
National approvals	XXX
Electrical Protection	XXX
Power Stage Driver Modules	XXX
Type Index	xxx
Index by order numbers	XXX


safe&easy

"We rely on reliability and flexibility; that is why we produce your products by our qualified and motivated employee." Battista Filippini, CEO Ticomel SA (a member of the SCHURTER Group)

> the Schurter Range at the Glance

SCHURTER is a progressive innovator and manufacturer of fuses, connectors, circuit breakers, input systems, EMC products and manufacturing services for the electronics industry. We focus on components that ensure safe supply of power and make the interface between human and machine easier.

power stage driver modules

	Description	Mounting	Terminal	Material	Web Reference or Type
The State of	DC/DC Converter for IGBT- or MOSFET Driver Modules	PCB mounted from top	Solder	Thermoplastic	PSDM-6 XXX
Wind Control of the C	600V IGBT/MOSFET Driver modules with integrated DC/DC converter	PCB mounted from top	Solder	Thermoplastic	PSDM-60 / PSDM-6T XXX
	General Product Information see Power S	tage Driver Modules nage XXX			

www.schurter.com/pg86

PSDM, the safe Driving

The PSDM (Power Stage Driver Module) has been developed for driving in a safe, reliable and easy way power IGBT or MOSFET transistors

The modules have internal circuitry to switch off and therefore to protect the power transistor in cases of fault at the output power stage, like short or reduced voltage driver. The PSDM has an isolated DC/DC converter with 2.4W output power implemented in a plastic case to supply the drive circuit. The data is transferred by a pulse transformer.

Power Stage Driver Module

IGBT Driver Modules

The IGBT driver modules PSDM-0DO2-5040 and PSDM-0DT2-5020 were developed to drive IGBT or MOSFET power transistors in an easy, safe and reliable way.

The modules have an internal turnoff circuit that protects the output power stage in the event of a short circuit. Commanding data is transfered by an optocoupler or a transformer.

Detailed information can be looked up here:

www.schurter.com/pg86

www.schurter.com/pg86

DC/DC Converter for IGBT- or MOSFET Driver Modules 600V IGBT/MOSFET Driver modules with integrated DC/DC converter

PSDM-60 (Data transfer via transformer)

PSDM-6T (Data transfer via optocoupler)

Description

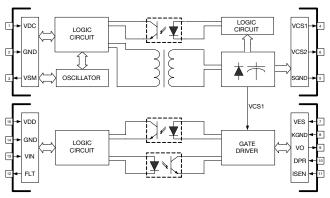
- Driver module for safe driving of IGBT or MOSFET power transistors
- DC/DC coverter included in module
- Diagnostic output VSM permits monitoring of converter output
- Galvanic isolation up to 3500 VAC
- Overcurrent and short circuit protection

Standards

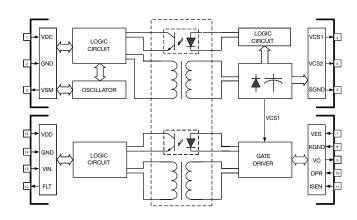
- EN 61248-5
- EN 61558-1

Applications

- Inverters
- Converters
- Motor drives


Web Links

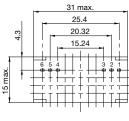
- RoHS: http://www.schurter.com/rohs

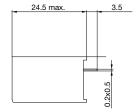

Technical Data	
Input voltage	10-15 VDC
Output voltage 1	15 VDC
Output voltage 2	-4 VDC
Output current	120 mA
Isolation voltage	3500 V
Switching frequency DC/DC converter	Up to 500 kHz
Switching frequency driver stage	Up to 100 kHz

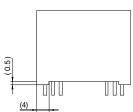
Connection method	THT
Weight	25 g
Material (casing)	Plastic, black, UL 94V-0
Sealing compound	UL 94V-0
Ambient temperature	–5 °C bis 85 °C

Block Diagram

PSDM-60 (Optocoupler Version)

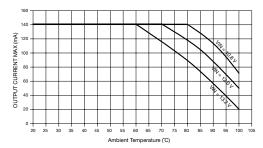

PSDM-6T (Transformer Version)


Elektrical Characteristics


Parameter	Symbol	Test Condition	Min	Туре	Max	Unit
Rated voltage	V _{DC}	to GND	10.8		13.2	V
Rated current	DC				320	mA
Output power	Po			2.6		W
Output voltage 1	V _{CS1}	to SGND		15		V
Output voltage 2	V_{CS2}	zu SGND		-4		V
Output current 1 and 2	lo				140	mA
Ripple voltage	V _{rippk-pk}	$V_{DC} = 15 \text{ V}, I_0 = 120 \text{ mA}$			240	mV
Efficiency	η			0.75		%
Switching frequency	fsw	$V_{DC} = 15 \text{ V}, I^{O} = 120 \text{ mA}$		500		kHz
Isolation capacity	Ciso			12	15	рF
Isolation resistance	Riso		10			$M\Omega$
Turn-on threshold	V_{tr}			14.8		V_{DC}
Hysteresis on-off	V_h			1.1		V_{DC}
Diagnostic output	V_{SM}		0		VDC	V_{DC}
Isolation voltage	V _{ISO}	50Hz/1s input to outputs			3500	V _{AC}
Short circuit protection		VCS1 to VCS2 VCS1 to SGND VCS2 to SGND	Limited	1 sec. maxin	num	

(VDC = 12V, TA = 25°C)

Mechanical Dimensions



Distances between pins: 2,54 mm

Derating

Versions

Description	Order number
DC/DC Converter	PSDM-0DN1-5040

Packing unit 18 pcs.

www.schurter.com/pg86

600V IGBT/MOSFET Driver modules with integrated DC/DC converter 600V IGBT/MOSFET Driver modules with integrated DC/DC converter

PSDM-60 (Data transfer via transformer)

PSDM-6T (Data transfer via optocoupler)

Description

- Driver module for safe driving of IGBT or MOSFET power transistors
- DC/DC coverter included in module
- Diagnostic output VSM permits monitoring of converter output
- Galvanic isolation up to 3500 VAC
- Overcurrent and short circuit protection

Standards

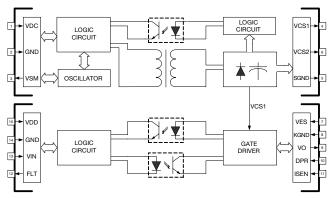
- EN 61248-5
- EN 61558-1

Applications

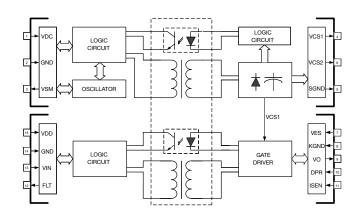
- Inverters
- Converters
- Motor drives

Web Links

- RoHS: http://www.schurter.com/rohs


Technical Data	
Input voltage	10-15 VDC
Output voltage 1	15 VDC
Output voltage 2	-4 VDC
Output current	120 mA
Isolation voltage	3500 V
Switching frequency DC/DC converter	Up to 500 kHz

Up to 100 kHz


25 g
Plastic, black, UL 94V-0
UL 94V-0
−5 °C bis 85 °C

Block Diagram

Switching frequency driver stage

PSDM-60 (Optocoupler Version)

PSDM-6T (Transformer Version)

PSDM-60 / PSDM-6T

www.schurter.com/pg86

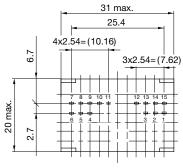
Pin-No.	Symbol	I/O	Description
1	V _{DC}	Input	Input voltage DC/DC converter
2	GND	Input	GND
3	V_{SM}	Output	Diagnostic output
4	V_{CS1}	Output	Output voltage DC/DC converter +15V
5	SGND	Output	Output DC/DC converter GN
6	V_{CS2}	Output	Output voltage DC/DC converter -4V
7	VES	Input	External input voltage
8	KGND	Input	Isolated ground (connected to SGND)
9	Vo	Input	Gate terminal
10	Dpr	Input	Saturation protection
11	ISEN	Input	Fault current
12	FLT	Output	Active fault output of driver module
13	V_{IN}	Input	Input 0-5V, PWM
14	GND	Input	Ground
15	V_{DD}	Input	+5V Input voltage of logic interface

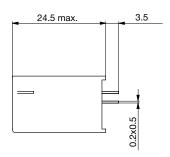
Electrical Characteristics of the DC/DC Converter

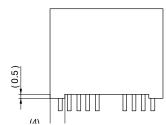
Parameter	Symbol	Test Condition	Min	Type	Max	Unit
Nominal power supply	VDC	zu GND	10		15	V
Supply current	DC				320	mA
Output power	Po			2.4		W
Output voltage 1	V _{CS1}	zu SGND		15		V
Output voltage 2	V _{CS2}	zu SGND		-4		V
Output current 1 and 2	lo				140	mA
Ripple voltage	Vrippk-pk	$V_{DC} = 15V$, $I_0 = 120 \text{ mA}$			240	mV
Efficiency	η			0.75		%
Switching frequency	fsw	$V_{DC} = 15V$, $I_0 = 120 \text{ mA}$		500		kHz
Isolation capacitance	Ciso			12	15	рF
Isolation resistance	Riso		10			$M\Omega$
Turn-on threshold	V_{tr}			14.8		VDC
Hysterisis on-off	Vh			1.1		VDC
Diagnostic output	VsM		0		VDC	VDC
Isolation voltage	Viso	50Hz/1s input to outputs			3500	Vac
Short circuit protection		VCS1 to VCS2 VCS1 to SGND VCS2 to SGND	Limited	1 sec. maxir	num	

(VDC = 12V, TA = 25°C)

Electrical Characteristics IGBT Driver

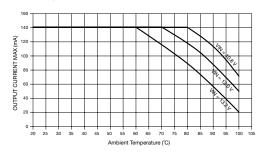

Parameter	Symbol	Test Condition	Min	Туре	Max	Unit
Nominal power supply	V_{DD}	zu GND	4.5	5.0	5.5	V
	V _{CS1}	zu KGND		15		V
	V _{ES}	zu KGND		-4		V
Supply current	IDD				25	mA
Peak supply current	DDP	t = 1 ms, Tastverhältnis = 50%			50	mA
Gate driver output						
Source current	lo				1	Α
Sink current	lo				2	Α
Logic input voltage	VIN (HIGH)	4.5	5	5.5	V	
	V _{IN (LOW)}		0	0.2	0.5	V
Delay time input	$t_{ extsf{pLH}}$	$V_{IN} = 5V$, $V_{DD} = 5V$,			300	ns
to output	$t_{ extsf{pHL}}$	$V_{CS1} = 15V$, $V_{CS2} = -4V$			330	ns
Switching frequency DC	fl_Nsw	$V_{CS1} = 15V$, $V_{CS2} = -4V$			100	kHz
		$V_{CS1} = 15V$, $V_{CS2} = GNDV$			50	kHz
Duty cycle			0		100	%
DC input voltage	HV _{DC}				600	V
Isolation voltage	Viso	50Hz/1s input to outputs			3500	V _{AC}
Active fault voltage	V_{FLT}			5	80	$V_{ exttt{DC}}$
Avctive fault current	FLT			10	50	mA
Undervoltage lockout start	Visoc		11.3	12	12.6	V
Undervoltage lockout disable	Visoc		10.4	11	11.7	V
Overcurrent threshold voltage	Visoc	$V_{\text{PIN}11} > 7V$	50	65	80	mV
Short circuit voltage threshold	Visoc	$V_{\text{PIN11}} > 7V$	100	130	160	mV
Desaturation protection	D _{PRth}	$V_{PIN10} > 100 \text{ mV}$	6.0	6.5	7.0	V


(VDC = 12V, TA = 25°C)


PSDM-60 / PSDM-6T

www.schurter.com/pg86

Mechanical Dimensions



Distances between pins: 2,54 mm

Derating

Versions

Description	Order number
Data transfer via optocoupler	PSDM-0DO2-5040
Data Transfer via transformer	PSDM-0DT2-5020

Packing unit 18 pcs.

Product Standard / Delinitions / CE-Marking / Conformity	***
National approvals	XXX
Electrical Protection	XXX
Power Stage Driver Modules	XXX

Product standard equipment standard

The product standard only contains minimum requirements. Attention is drawn to the fact that appliance specifications might contain requirements additional to or deviating from those specified in the relevant product standards.

Comments on definitions used

Please be aware that the specifications nominal value used in the German part of the Schurter catalogue and the data sheets, is synonymous with rated value.

The difference between these two values is a pure matter of definition. In order to avoid any unnecessary complications we will continue to use the specifications nominal value.

CE marking is the only marking which indicates that a product conforms to the relevant EU-directive.

This means that the CE-mark is no quality or standard conformity mark but only an administration mark.

SCHURTER products are covered by the low voltage directives 72/23/ EEC and 93/68/EEC. Those are valid for equipment and appliances with rated voltage values between AC 50 V to AC 1000 V as well as DC 75 V to DC 1500 V.

The CE marking of SCHURTER parts will be found on the label of the smallest packing unit. On request we will submitt a CE conformity statement for each component. CE conformity statements and approvals can also be retrieved from the internet under www.schurter.com.

Conformity to component standards, national approvals

National testing institutions are testing according to national and international standards or other generally recognized rules of technology. Their certification/approval-marks confirm the observance of the safety requirements which electric appliances must fulfil.

National approvals

₩.	(Recognition)	UL	Underwriters Laboratories (USA)
(II)	(Listing)	UL	Underwriters Laboratories (USA, Canada)
c 91 us	(Recognition)	UL	Underwriters Laboratories (USA, Canada)
շ(Ս <u>լ</u>)սո	(Listing)	UL	Underwriters Laboratories (USA, Canada)
⊕ _		CSA	Canadian Standard Association, Component Acceptance Service
(B)		CSA	Canadian Standard Association
(<u>\$</u>)		SEV	Schweizerischer Elektrotechnischer Verein
<u>~</u>	(Mark)	VDE	Verband Deutscher Elektrotechniker
VDE	(Certificate of	conformity	with factory surveillance)
A		BSI	British Standard Institute
(Z)		SEMKO	Svenska Elektriska Materielkontrollanstalten
$\widetilde{\mathbb{N}}$		NEMKO	Norges Elektriske Materiellkontroll
(D)		DEMKO	Danmarks Elektriske Materielkontrol
(F)		FIMKO	Finnish Electrical Inspectorate
(VE)		ÖVE	Österreichischer Verband für Elektrotechnik
KEMA		KEMA	Keuring van Elektrotechnische Materialien
(1)		IMQ	Instituto italiano del marchio di qualità
10	(Mark)	European Electrical C	Norms Certification
(M)		CCC	China Compulsory Certification

In addition to the combined UL/CSA approvals, most of the SCHURTER components are also approved by one of the European Certification Bodies like VDE (Germany), Electrosuisse (Switzerland) or SEMKO (Sweden). The safety testing of all these European Certification Bodies are based on the commen European Safety Standards. With the harmonisation effort in Europe, the different National European Certification Bodies have lost their importance and SCHURTER has decided to maintain only one European approval (e.g. VDE, SEV or SEMKO) in future. The others will not be renewed once they have expired.

Because UL and CSA are not members of the CENELEC, the standards of UL and CSA are not harmonised yet with the European Standards. However, UL and CSA are trying to harmonize their standards with each other. Where possible, SCHURTER will apply for the combined cULus or cURus approval.

Further to development in Asia, SCHURTER has obtained national approvals from China, Japan and Korea.

IP degrees of protection provided by enclosures (IP code)

Standards IEC 60529; EN 60529

Scope

These standards apply to the classification of degrees of protection provided by enclosures for electrical equipment with a rated voltage not exceeding 72.5 kV.

Object

The object of these standards is to give:

- a) Definitions for degrees of protection provided by enclosures of electrical equipment as regards:
 - Protection of persons against access to hazardous parts inside the enclosure
 - Protection of the equipment inside the enclosure against ingress of solid foreign objects
 - 3. Protection of the equipment inside the enclosure against harmful effects due to the ingress of water.
- **b) Designations** for these degrees of protection.
- c) Requirements for each designation.
- d) Tests to be performed to verify that the enclosure meets the requirements of these standards.

Designations

The degree of protection provided by an enclosure is indicated by the IP Code.

Elements of the IP Code and their meanings

A brief description of the IP Code elements is given in the following table.

IP xy	Meaning for the protection of equipment	Meaning for the protection of persons
	Against ingress of solid foreign objectif	Against access to hazardous parts with
x = 0	(non-protected)	(non-protected)
x = 1	50 mm diameter	back of hand
x = 2	12.5 mm diameter	finger
x = 3	2.5 mm diameter	tool
x = 4	1.0 mm diameter	wire
x = 5	dust-protected	wire
x = 6	dust-tight	wire
	Against ingress of water with harmful effects	
y = 0	(non protected)	
y = 1	vertically dripping	
y = 2	dripping (15° tilted)	
y = 3	spraying	
y = 4	splashing	
y = 5	jetting	
y = 6	powerful jetting	
y = 7	temporary immersion	
y = 8	continuous immersion	

Protection against electric shock

1. Protection against direct and indirect contact General terms

The protection against electric shock on electric equipment as well as their components are divided into the following parts:

- Protection against direct contact with live parts concerns all measures for the protection of human beings and animals against hazards which result from direct contact with live parts of electric equipment and their components.
- Protection against indirect contact is the protection of human beings and animals against hazards which result from contact of live parts 1 of electric equipment as well as components thereof, which have become live due to an insulation failure.
- ¹⁾ Accessible, conductive part, which is not conductive normally but which may be conductive due to a failure.

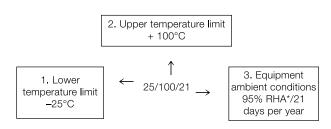
2. Protection against direct contact with live parts e.g. of a fuseholder

The data sheets of the relevant components inform about the taken measures.

3. Protection against indirect contact

Measures for the protection against indirect contact on electrical equipment are defined according to IEC 61140 by the 4 protection classes 0, I, II, III. Each protection class includes two protection measures. Even if one of these measures should fail, no electric shocks will occur.

Protection class	Main protective measures
0	Basic insulation between live parts and accessible conductive parts. Earth-free location, non-conducting environment.
	Basic insulation between live parts and accessible conductive parts. Means are provided for the connection of accessible conductive parts of the equipment to the protective (earthing) conductor in the fixed wiring of the installation in such a way that accessible conductive parts cannot become live in the event of a failure of the basic insulation.
	Basic insulation between live parts and accessible conductive parts. Additional insulation. Basic and supplementary insulation are summarised under the term "double insulation". Under certain circumstances also a "reinforced insulation" (single insulation system) may guarantee an equivalent protection against electric shock as a "double-insulation" does. No terminal for a protective conductor is allowable. A possibly existing protective conductor must not be connected and has to be insulated like any live part.
	 Functional insulation. Supply at safety extra-low voltage SELV (the circuit is isolated from the mains supply by such means as a safety isolating transformer). The protection against electric shock is in this case completely based on the supplying by SELV-circuits (U ≤ 42 V). Higher voltages are not generated in the equipment. No terminal for a protective conductor is allowable.



Application Classes (IEC 60068-1)

The aim of this standard is to create a basis for classification of telecommunication engineering electrical components according to application classes which correspond to their climatic and mechanical suitability.

Example:

^{*} relative humidity

MTBF

The high reliability of the filters can be excelled from MTBF (Meantime between failures). These values are according MIL-HB-217-F class \boldsymbol{G}_{B} at an amient temperatur 40§C at rated voltage and current.

Power stage driver module

DC/DC Converter Module

The PSDM-0DN1-5040 module is a DC/DC power supply converter designed to provide a galvanic isolated, regulated and monitored power to IGBT and MOSFET drivers. The module requires an input voltage of 12V $_{\rm DC}$ \pm 10% and has dual outputs of 15V and 4V with a maximum supply current of 140 mA. This DC/DC module has a unique diagnostic output permitting the user to monitor the converter output voltage and thus to avoid damage to the power stages resulting from under voltages.

IGBT Driver Modules

The IGBT driver modules PSDM-0DO2-5040 and PSDM-0DT2-5020 were developed to drive IGBT or MOSFET power transistors in an easy, safe and reliable way. The modules have an internal turnoff circuit that protects the output power stage in the event of a short circuit. The PSDM has an isolated DC/DC converter with a 2.4W output power for the drive circuit supply. (see PSDM-0DN1-5040). Data is transfered by an optocoupler or a transformer.

Connection Description

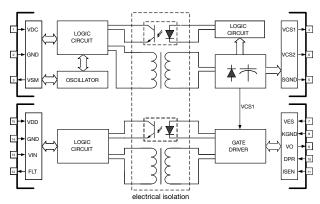


fig. 1: PSDM

PIN1: $V_{\rm DC}$

A stabilised voltage supply between 10V and 15V with respect to GND.

PIN2: GND

GND is connected to the frame of the electronic power supply.

This output refelects the output voltage of the DC/DC converter. When more current is needed at the output stage, the voltage across \mathbf{V}_{SM} decreases. When V_{SM} reaches the value of the DC/DC converter power supply, then the DC/DC converter has reached the maximum transfer current.

PIN4: V_{CS1}

VCS1 is the isolated positive output power supply for the driver logic.

PIN5: SGND

SGND is the electrically isolated output ground from the DC/DC converter.

VCS2 is the isolated negative output power supply for the driver logic.

VES is the external power supply for the driver logic. $V_{\rm ES}$ is connected to V_{CS2} to turn off the MOSFET/IGBT connected to the module.

PIN8: KGND

KGND is the isolated Kelvin ground that is connected to SGND.

PIN9: $\rm V_{\rm O}$ Output $\rm V_{\rm O}$ is the signal output for the IGBT gate drive. In order to perturn-off, two gate resistors and a diode must be used (for example, $R_{q1} = 22 \Omega$ and $R_{q2} = 100 \Omega$).

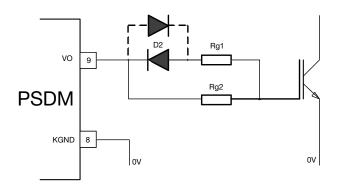


fig. 2: Gate Driver

PIN10: D_{PR}

This connection is used to monitor the voltage drop across the turnedon current transistor, so as to provide protection against short circuits and overloading on the IGBT. This involves monitoring the collector voltage and turning off the power transistor if this voltage rises above a certain threshold value. The best method of detecting an excess threshold value is through the use of an external fast or super-fast high voltage diode D1 (for example 1N4937) and an internal comparitor. The PSDM has power transistor supervision, which monitors the collector voltage on the IGBT. Under normal operating conditions when the IGBT is turned on and saturated, the voltage across DPR is kept low. When the IGBT is no longer saturated or turned off, the internal current source (270 $\mu\text{A})$ will trip out the comparitor. The comparitor threshold value is typically 6.5 V (D_{PRth}). Resistor RRV is required to protect the PSDM from reverse voltage transients and should not be larger than $1k\Omega$. The fault event is transferred to the output pin FLT by an internal optocoupler.

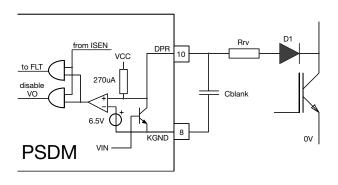


fig. 3: Power Transistor Supervision Dpr

PIN11: I_{SEŅ}

Input I_{SEN} is required to check the supply current across Risen, serving thus as a protection against short circuits and overvoltages on the IGBT. An RC filter is used across pins 8 and 11 to attenuate any high frerquency noise. If an overcurrent ($V_{ISOC} > 65$ mV) takes place across R_{ISEN} , IGBT will be turned off by an internal circuit. The signal fault is reset when another impulse appears at the signal input V_{IN} . In the event of a short circuit across the output ($V_{ISSC} > 130$ mV), inductance will be very small. Measured across resistor Risen, the short circuit signal is transfered by an internal optocoupler to the output pin FLT. If a short circuit is detected, the IGBT remains turned off until the next impulse (V_{in}).

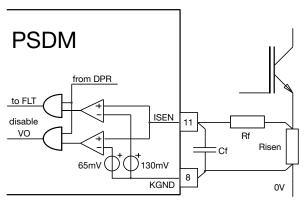


fig. 4: Fault Current Detection I_{sen}

PIN12: FLT

The PSDM has an active fault output. This fault output is internally interfaced to an optocoupler. In a turned-on state, the current range of the optocoupler is between 10 to 20 mA, possessing a high impedance in the turned-off state. The integrated circuit is shown below.

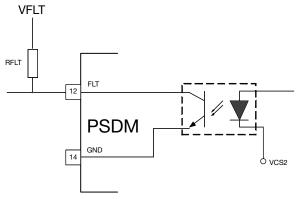


fig. 5: Fault Output

The FLT pin is only enabled when it is used together with a D_{PR} or I_{SEN} signal. Voltage V_{FLT} can be taken from 5V to 15V with a resistor. The supply current permitted is 10mA. In the event of a fault, output FLT is switched to GND.

PIN13: V_I

This input has a SchmittTrigger characteristic. HIGH level turns the power transistor on, LOW turns it off.

PIN15: V_{DD}

A stabilised voltage supply between 4.5V and 5.5V with respect to GND.

Application Example: Power Supply 0-15V (fig. 6)

With this circuitry example, an output voltage of 0-15V is generated at $\rm V_0$. The two functions fault current detection (ISEN) and power transistor supervision (D_{PR}) are inactively switched for this application. With this, SGND is connected to $\rm I_{SEN}$, $\rm D_{PR}$, $\rm V_{ES}$ and KGND. If necessary, a seprate resistor can be connected between $\rm V_0$ and IGBT in order to optimize the turning on and off of the semi-conductor.

Power stage driver module

Application Example: Power Supply -4-15V (fig. 7)

With this circuitry example, an output voltage of -4-15V is generated at V_0 . The two functions fault current detection (I_{SEN}) and power transistor supervision (I_{DPR}) are inactively switched for this application. With this, SGND is connected to I_{SEN} , I_{DPR} , I_{VES} and KGND. If necessary, a seprate resistor can be connected between V0 and IGBT in order to optimize the turning on and off of the semi-conductor.

Application Example: Power Transistor Supervision (fig. 8)

In this example, power transistor supervision is presented for the IGBTs. For this, output $V_{\rm CS2}$ (-4V) is connected to $V_{\rm ES}.$ Supervision is actively switched with the connection of $V_{\rm CS1}$ to $I_{\rm SEN}.$ In addition, a high voltage diode is connected in series to a resistor between $D_{\rm PR}$ and the IGBT collector. The capacitor is switched from $D_{\rm PR}$ to SGND.

Application Example: Fault Current Detection (fig.9)

With this example, a fault current detection circuitry is presented for the IGBTs. For this, output V_{CS2} (-4V) is connected to V_{ES} . A resistor R_{ISEN} is connected between I_{SEN} and KGND. An RC filter is used to attenuate high frequency noise. A capacitor is needed between D_{PR} and KGND.

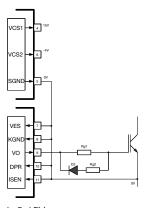


fig. 6: Power Supply 0-15V

>

general product-information

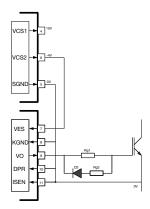


fig. 7: Power Supply -4-15V

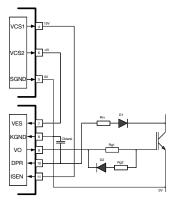


fig. 8: Power Transistor Supervision

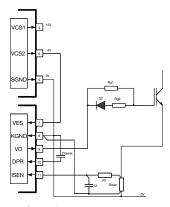


fig. 9: Fault Current Detection

Automatic Undervoltage Turn-off

The PSDM module is equipped with undervoltage protection for the gate drive of the IGBT/MOSFET. Should the gate voltage be too low, the IGBT can quickly overheat; to avoid this, the undervoltage protection is arranged such that when the voltage drops below 10V, the gate voltage on the PSDM is turned off.

Layout and Wiring (fig. 10)

The driver module should be placed as close as possible to the power transistor so that the wiring is kept short. Long wiring connections should be avoided; it is recommended to twist the wires here.

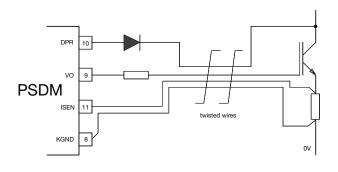


fig. 10: Wiring

> type index

Web Reference or Type	Product group	page
Р		
PSDM-6	■EMC products	XXX
PSDM-60 / PSDM-6T	■EMC products	XXX

> index by order numbers

Order Number		Web Reference or Type	page
from	to		
PSDM-0D29-0001	PSDM-0DN1-5040	PSDM-6	XXX

SCHURTER develops, munufactures and markets components for the electronics industries worlwide.

safe&easy

> COMPONENTS

Switzerland

SCHURTER AG Tel: ++41 +41 369 31 11 contact@schurter.ch

Brasi

SCHURTER + OKW do Brasil Componentes Eletronicos Ltda Tel.: ++55 +11 5041 31 41 info@sob-brasil.com

China

SCHURTER Electronics Shenzhen Ltd. Tel: ++86 755 2994 0066 info@schurter.com.cn

CHI LICK SCHURTER Ltd. Hong Kong SAR Tel: ++852 2408 7798 fuse@chilickschurter.com

Czech Republic

SCHURTER spol. s.r.o. Tel: ++42 +0483 392 080 firma@schurter.cz

France

SCHURTER SAS Tel: ++33 +3 2502 5049 contact@schurter.fr

Germany

SCHURTER GmbH Tel: ++49 +7642 6820 info@schurter.de

SCHURTER Otto Heil GmbH Tel: ++49 +6171 506 10 sales@schurter-heil.de

India

SCHURTER Electronics (India) Pvt. Ltd. Tel: ++91 +2667 264753/4 info@schurter.co.in

Italy

KEVIN-SCHURTER S.p.a Tel: ++39 +02 3046 5311 info@kevin.it

Japan

SCHURTER K. K. Tel: ++81 +3 5465 2062 info@schurter.co.jp

Singapore

SCHURTER (S) Pte. Ltd. (APAC HQs) Tel: ++65 6291 2111 info@schurter.com.sg

Slovakia

SCHURTER (SK) s.r.o. Tel: ++42 138 539 84 80

Sweden

SCHURTER Nordic AB Tel: ++46 +8 447 35 60 info@schurter.se

UK

SCHURTER Ltd. Tel: ++44 +1243 810 810 sales@schurter.co.uk

USA

SCHURTER Inc. Tel: ++1 +707 636 3000 info@schurterinc.com

> INPUT SYSTEMS

Germany

SCHURTER GmbH Tel: ++49 +7642 6820 info@schurter.de

Switzerland

MEIERHOFER AG Tel: ++41 +56 481 90 00 info@meierhofer.ch

> EMS

ELECTRONIC MANUFACTURING SERVICES

Romania

INTERELEKTRONIC SRL Tel: +402 135 08 100 info@interelektronic.ro

Switzerland

TICOMEL SA
Tel: ++41 +91 640 44 10
contact@ticomel.ch